(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(x, y) → cond(gt(x, y), x, y)
cond(false, x, y) → 0
cond(true, x, y) → s(minus(x, s(y)))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(x, y) → cond(gt(x, y), x, y)
cond(false, x, y) → 0'
cond(true, x, y) → s(minus(x, s(y)))
gt(0', v) → false
gt(s(u), 0') → true
gt(s(u), s(v)) → gt(u, v)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
minus(x, y) → cond(gt(x, y), x, y)
cond(false, x, y) → 0'
cond(true, x, y) → s(minus(x, s(y)))
gt(0', v) → false
gt(s(u), 0') → true
gt(s(u), s(v)) → gt(u, v)
Types:
minus :: 0':s → 0':s → 0':s
cond :: false:true → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → false:true
false :: false:true
0' :: 0':s
true :: false:true
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
gtThey will be analysed ascendingly in the following order:
gt < minus
(6) Obligation:
Innermost TRS:
Rules:
minus(
x,
y) →
cond(
gt(
x,
y),
x,
y)
cond(
false,
x,
y) →
0'cond(
true,
x,
y) →
s(
minus(
x,
s(
y)))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
minus :: 0':s → 0':s → 0':s
cond :: false:true → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → false:true
false :: false:true
0' :: 0':s
true :: false:true
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
gt, minus
They will be analysed ascendingly in the following order:
gt < minus
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
gt(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
false, rt ∈ Ω(1 + n5
0)
Induction Base:
gt(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
false
Induction Step:
gt(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
minus(
x,
y) →
cond(
gt(
x,
y),
x,
y)
cond(
false,
x,
y) →
0'cond(
true,
x,
y) →
s(
minus(
x,
s(
y)))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
minus :: 0':s → 0':s → 0':s
cond :: false:true → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → false:true
false :: false:true
0' :: 0':s
true :: false:true
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
Lemmas:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
minus
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol minus.
(11) Obligation:
Innermost TRS:
Rules:
minus(
x,
y) →
cond(
gt(
x,
y),
x,
y)
cond(
false,
x,
y) →
0'cond(
true,
x,
y) →
s(
minus(
x,
s(
y)))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
minus :: 0':s → 0':s → 0':s
cond :: false:true → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → false:true
false :: false:true
0' :: 0':s
true :: false:true
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
Lemmas:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
minus(
x,
y) →
cond(
gt(
x,
y),
x,
y)
cond(
false,
x,
y) →
0'cond(
true,
x,
y) →
s(
minus(
x,
s(
y)))
gt(
0',
v) →
falsegt(
s(
u),
0') →
truegt(
s(
u),
s(
v)) →
gt(
u,
v)
Types:
minus :: 0':s → 0':s → 0':s
cond :: false:true → 0':s → 0':s → 0':s
gt :: 0':s → 0':s → false:true
false :: false:true
0' :: 0':s
true :: false:true
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_false:true2_0 :: false:true
gen_0':s3_0 :: Nat → 0':s
Lemmas:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → false, rt ∈ Ω(1 + n50)
(16) BOUNDS(n^1, INF)